
WHITE PAPER

Hyper-V
Automation for
Windows Patch
Diffing
By: Kevin McGrath

2Hyper-V Automation for Windows Patch Diffing

WHITE PAPER

Table of Contents

	 03	 What is patch diffing, and why would we do it?

	 04	 Why Hyper-V?	

	 04	 Finding a patch to investigate
05	  Microsoft Update Catalog

06	  Aside on Patch Formats

	 07	 OK, we know what we want to investigate. Now

what?	
10  More Complete Automation

3Hyper-V Automation for Windows Patch Diffing

WHITE PAPER

I’ve often found that the best way to understand any given tool is to
break it. Or at least see how other people broke it and try to understand
that. In that spirit, this blog will walk through some automation developed
to facilitate patch diffing -- the investigation of changes made by
updates to a given library. This blog is a discussion of how to obtain the
before and after files for a given patch, rather than the actual process of
patch diffing. This is intentional, as the process of obtaining the files to
investigate is often tedious, error-prone, and a frequent stumbling block.

Some assumptions are made:

	� You are attempting this on an x86-64 based Windows machine that
meets the requirements for Hyper-V (see below).

	� You have at least one set of tools for binary diffing -- r2diaphora
enables the free diaphora on r2 if you don’t have a license for IDA-Pro.

	� You can run PowerShell scripts as admin on your local machine.
An admin PowerShell session is required due to the way Hyper-V
modules work in PowerShell.

	� You have some specific CVE you want to investigate and know the
Knowledge Base (KB) ID of the patch.

After making use of this technique, you will have (at least) 2 files that you
can compare -- what I call a pre-patch version and a post-patch version.
One of the important considerations to keep in mind, if you are looking
for a patch against a specific CVE, is that there will often be multiple
DLLs impacted by the change...and not always the DLLs you might think.

What is patch diffing, and why would we do it?

Patch diffing is a technique in which you investigate a given CVE by
looking at the binary in question both before and after the patch, looking
for where the binary changed. It’s an incredibly powerful approach to
writing a proof-of-concept, but it’s also used by malicious actors to
weaponize a given vulnerability (if possible). This is possible primarily
due to the fact that not everyone can or will patch, and once a patch is
public, the cat is out of the bag, as it were.

This is a static analysis technique. You will not be comparing the
running behavior of the code, but rather the raw opcodes which make
up the binary. As mentioned above, there are many tools to help with
this activity, and it’s highly recommended that you leverage those --
sometimes the change is so small, it’s easy to overlook.

This blog won’t cover the actual diffing process as there are numerous
tutorials available; instead, the focus is on an automated way to identify
possible candidates for diffing, as well as making such files easily
accessible to the tools you want to use.

https://github.com/FernandoDoming/r2diaphora
https://github.com/joxeankoret/diaphora
https://github.com/radareorg/radare2

4Hyper-V Automation for Windows Patch Diffing

WHITE PAPER

Why Hyper-V?

Hyper-V is a type 1 hypervisor which runs bare metal on the host system
(in essence, this means that the “host OS” is actually running within the
hypervisor as well, albeit in a special fashion), and is freely available from
Microsoft, so long as you are running Windows Professional, Enterprise, or
Education1, 2.

Finding a patch to investigate

It’s the second Tuesday of the month. You know what that means!
Microsoft’s Patch Tuesday is here! OK, maybe that isn’t super exciting to
people that aren’t me; regardless, patches are available, and Microsoft
publishes knowledge base (KB) articles about each and every patch set
it deploys. Assuming you are reading this, you’re interested in looking at
what those patches actually do. So how can we figure that out?

As an aside, it should be noted
that if you still want to run a type
2 hypervisor, such as VMware
Workstation or VirtualBox, there
are specific minimum versions
required:

	� VirtualBox 6+

	� VMware Workstation 15.5.5+ In
the case of VirtualBox, it will
simply use the Hyper-V engine3.
In the case of VMware, the
change requires a move from
a priviledged virtual machine
monitor to a user-level monitor
which leverages the Hyper-V
API to run virtual machines4.

Given that Hyper-V is freely
available, and most importantly
has a scriptable API from
PowerShell, it seemed an ideal
combination of tools that we
could make something of.
It’s quite likely there is qemu
equivalent on Linux, but I have
not investigated that possibility,
since I’m running Windows and I’m
currently investigating Windows
vulnerabilities.

https://medium.com/teamresellerclub/type-1-and-type-2-hypervisors-what-makes-them-different-6a1755d6ae2c

5Hyper-V Automation for Windows Patch Diffing

WHITE PAPER

We have a few ways. We can disable automatic patch installation and
query the update servers to obtain the KB number of a patch we’re
interested in (maybe it touches on the kernel, or Hyper-V, or even MS
Teams if that’s your bag). We can also let the update install on our host
machine, and then look at our update history, as seen here:

The circled value is the knowledge base entry which details this patch. So
what can we use this value for?

Microsoft Update Catalog

This is where the Microsoft Update Catalog comes in. You can search
by KB number, and it will find you the MSU (Microsoft update package)
for the different variants of Windows (ARM64, ADM64). This site doesn’t
appear to have a usable scripting API, but you can just download the files
manually and stick them somewhere safe.

OK, now we have the patch file that contains the fix we are interested
in. Unfortunately, we can’t just use that, as an MSU file is an archival
format, typically containing of multiple CAB files, each of which contains
some number of additional files. These additional files include manifests,

https://www.catalog.update.microsoft.com/Home.aspx

6Hyper-V Automation for Windows Patch Diffing

WHITE PAPER

security catalogs, and several other files which we will mostly ignore. We
are primarily interested in the new DLLs.

Except...there are many “DLL” files that aren’t actually, you know, DLL
files. They are too small, they are missing even a basic PE header, and
IDA doesn’t parse them as anything but raw binaries. Well, huh...there’s
definitely something going on here, what with these files always being
in a . . .\f\ , . . .\r , or . . .\n folder, and often different sizes but all the same
names. So, what’s going on here?

Aside on Patch Formats

As seen in [5], there are 2 different forms of patches. Sometimes,
MS will distribute full replacement DLL/EXE files for the component
in question. Other times, it will make use of deltas, which are binary
patches to the component. In an ideal world, after patch extraction,
you would find the full DLL you need in C:\Patches\MSU\x64\ (or
whatever path you choose to use when extracting). Unfortunately,
this won’t always be the case. Quite often, you will end up with
a set of folders underneath a named component (of the form
. . .\<platform>_<component>_<checksum>\).

If you are wondering what the named-like-a-DLL-but-too-small-and-not-
a-DLL files that you find in folders . . .\f\ and . . .\r\ , these are the delta
files. There are three types:

	� forward

	� reverse

	� null

Forward deltas move from a base binary (as shipped in a feature release
of Windows) to the current version. Reverse deltas are exactly what they
say on the tin: they take a current binary and revert it to the base version.
Null deltas are essentially new files. While it is perfectly possible to write a
Windows C++ program that makes use of the MSDELTA library, that would
be tedious. And also, unnecessary. Fortunately for us, a GitHub user by
the name of wumb0 has written a python script which leverages the
MSDELTA library to apply a given pair of patches (forward and reverse) to
a file, or to apply a null patch to obtain a new file.

If you are interested in obtaining the DLLs you’re interested in without
spinning up a new VM, for many components you can simply use the
delta_patch.py script, included here for completeness (original source).
You can obtain the deltas of applied patches in the C:\Windows\
WinSxS directory, applying paired updates in a reverse-then-forward
method to get to a specific patch level. Look at [5] for the full details on
how you might want to do this.

https://docs.microsoft.com/en-us/previous-versions/bb417345(v=msdn.10)#msdelta
file:///dmcgrath/hyper-v-patch-diffing/-/blob/main/delta_patch.py
https://wumb0.in/extracting-and-diffing-ms-patches-in-2020.html

7Hyper-V Automation for Windows Patch Diffing

WHITE PAPER

OK, we know what we want to investigate. Now
what?

The steps to investigate a given patch file are nearly always the same.
We’ll walk through the process of using a full MSU “by hand,” then put it
all together into an automation script.

The steps themselves are:

1.	 Build a Windows VM of the version of interest -- so if you want to investigate something
that came out on Patch Tuesday of this month, snag the ISO from MSDN that was
updated no later than last month.

2.	 Copy the .msu package of the given KB from the Microsoft Update Catalog. If you know
the KB of the update you are interested in, you can search the catalog for it.

3.	 At this point, you need to extract the files from the patch file. You can do this manually
with C:\Windows\system32\expand.exe -F:* “C:\Patches\patch.msu” , recursively
as needed on any CAB files. That gets pretty old, and pretty cluttered. What I would
suggest is making use of the PatchExtract.ps1 script. This is an interesting tool, if only for
its provenance. It was originally released by Greg Linares (@Laughing_Mantis), possibly in a
Twitter thread. Now, the only public sources I can find for it are other peoples’ gits, and an
article on working with patch files.5

This will create a series of folders for you within C:\Patches\MSU\ .

4.	 I’d suggest copying the entire contents of C:\Patches\MSU\x64 to your host. This will
give you the ability to manipulate the contents of that directory much more easily. There
are a few ways you can do this:

	– You can copy/paste the whole directory from the VM, so long as you’re connected via
an “Enhanced Session”

	– You can mount a shared folder within the VM, and copy the files there

	– You can user the PowerShell Hyper-V API to move the files:

This requires that you have a session $s , which can be created with:

I’m sure there are more, as well, but this blog is about automation, after all.

file:////dmcgrath/hyper-v-patch-diffing/-/blob/main/PatchExtract.ps1

8Hyper-V Automation for Windows Patch Diffing

WHITE PAPER

5.	 In some fashion, you will need to generate a list of the DLL files which this update
touches. To do it from within PowerShell on the host, you can run

These are my paths. Yours may differ.

6.	 Once you have the list of DLLs the update modifies, you can extract them from the VM.
Again, there are a few ways to do this:

	– Copy each and every one by hand. In some updates, there are thousands. But you
could do it, I suppose.

	– On the VM, use powershell to copy the full list to a new folder, then use one of the
methods above to copy that folder to the host.

	– Or you can use more automation!

It is worth pointing out, this assumes you have a session $s to work with. This
snippet also displays a progress meter, based on the total number of DLLs we are
attempting to copy, while silently ignoring missing files and any other errors. By setting
$progresspreference to ‘silentlyContinue’ we eliminate the copy-file progress dialog,
while still retaining our progress meter. $patchPath is the base path on your host where
you want the DLLs while $CVE is exactly what it says. Now that you have the pre-patch
DLLs copied to your host, it’s time to apply the patch!

	– You can double click the .msu file

	– You can use the following command:

7.	 In either case, the patch will be installed. Now reboot the system.

8.	 Repeat the exercise above where you copy the DLLs, this time copying in to
$patchPath\$CVE\post_patch\ .

9.	 As a final step, checksum each file in both $patchPath\$CVE\pre_patch\ and
$patchPath\$CVE\post_patch , noting which DLLs actually changed. I put them in the
$patchPath\$CVE\dlls_of_interest\ directory, suffixed by whether they are pre- or
post-patch.

10.	At this point, you are welcome to use whatever tool you prefer to actually diff the files!

9Hyper-V Automation for Windows Patch Diffing

WHITE PAPER

If this is something you do regularly, that’s a lot of time, especially since
it requires so much manual involvement. Turns out, we can remove that
human component, which serves two purposes:

1.	 It removes the tedium of the process

2.	 It removes the common mistake points due to tedium.

There are a few places where manual intervention is still required, but
they are minimized. This will be discussed in more detail below.

More Complete Automation

So how do we automate as much as possible? Turns out the majority of
what we are doing can be invoked via the PowerShell CLI. Also, there’s
a PowerShell API which can be used to invoke commands on a remote
session (the VM is the remote in this case).

Some more assumptions to bring up at this point:

	� You have a base VM from which to clone. This means you have a VM
that has had Windows installed, but little or nothing else done to it.

	� You want to create a new VM for each CVE you are investigating.
While not required, it is strongly encouraged.

OK, that’s not too long a list. Let’s do this! Do you have a cup of coffee? Maybe a sandwich or
a piece of cake? Because you’ll need at least that during this process.

1.	 Installing a VM to get to the right version takes a decent amount of time, especially if you
have to download the ISO. Let’s say 20 minutes, give or take.

2.	 Copying the MSU file takes under a minute, no big deal.

3.	 Extracting the MSU file...this can take a while. Large MSUs can easily take 20-30 minutes.
Even smaller updates take a solid 5 minutes

4.	 Copying the patch files, give it a few minutes.

5.	 Copying the potentially modified DLLs can take anywhere from a few minutes to a few
hours, depending on the approach you want. For a moderately sized update, even using
the automation above, it takes 5-10 minutes.

6.	 Apply the update. 20-30 minutes, quite often.

7.	 Repeat step 5 for post-patch DLLs, another 5-10 minutes (at least)

8.	 Run the checksums, compare, and copy relavent DLLs to a new folder to make
investigation easier. 2-3 minutes.

9.	 Total runtime: On the order of 75-90 minutes. Assuming you’re paying attention and don’t
get distracted.

10Hyper-V Automation for Windows Patch Diffing

WHITE PAPER

OK, with that out of the way, how can we clone a VM from the
command line? Below is a snippet of code which does just that.
Comments are included in the code to explain the origin of
variables, and what exactly this code does.

So, at this point, we have a new VM of the current virtualized
hardware generation, configured to use 8GB of memory, 4 CPU
cores, and the default switch for network access. If you make use
of Hyper-V Manager (GUI application) you should see the new VM in
the list of available VMs, and it should be in the “running” state.

While this isn’t always required, for safety, this is a pause point which
requires user interaction. Specifically, you need to log in to your
shiny new VM and, if necessary, create a password for it. Regardless,
the VM should be logged into, or (occasionally) the remote PS
session will just...close. No explanation, just no connection, and
therefore no actions within the automation will succeed from this
point forward.

OK, you’re logged in, you’ve obtained the MSU you want, now what?
Well, this is where things get customizable. There are many features
you can enable, software you can install, etc. It really depends on
what you want to do with the VM. If you’re looking to root cause a
vulnerability, odds are good you want to have some development
tools installed (procmon, windbg, vscode, etc.) , but that all
requires a lot of manual grunt work, doesn’t it?

11Hyper-V Automation for Windows Patch Diffing

WHITE PAPER

Well, not really, no. There are multiple tools out there which can help
you with this step, such as choco, scoop, or winget. While the script
presented here uses choco (mostly due to inertia), scoop and winget
both bring some interesting features to the table. While choco requires
administrator privileges, scoop installs in user mode. Winget is the new,
native Windows package manager, and can install anything available in
the Microsoft Store, as well as many other applications. Any of the three
could be used, depending on whether they have the tools you wanted/
needed on the VM.

And since we’re all about doing this unattended, we can use the Invoke-
Command commandlet from the Hyper-V API to invoke the package
manager from the host.

To use Invoke-Command , you use the session created earlier, and then
give it a ScriptBlock . This will be executed on the VM, as administrator,
within PowerShell. This distinction is important, as that allows us to
use native PowerShell in the ScriptBlock , rather than having to mix
and match cmd commands with PowerShell. Also very important, the
body of the ScriptBlock runs on the VM, not the host. For the most
part, you can consider it to be very similar to a fully isolated scope:
variables don’t have their outside-the-ScriptBlock values, and no
new variables will survive after the end of the ScriptBlock . Now, is
this documented anywhere? Not that I could find -- this came out via
a lot of experimentation with command line switches, setting values in
the ScriptBlock that are magically not there, etc. Let my pain save you
some trouble: assume nothing from the rest of the script exists within a
ScriptBlock and you will find joy.

In this instance, there’s a collection of tools installed on the VM, mostly
development aids (git, notepad++, the new Terminal application, some
others). Many VScode extensions are also available via choco -- choco
search vscode will display the available options. $choco is a command

12Hyper-V Automation for Windows Patch Diffing

WHITE PAPER

line switch to the larger script which defaults to $false to control
whether you want tools installed or not. It does take a solid chunk of
time and can be easily skipped if you prefer to do any and all analysis
statically on your host.

Some other switches control other Windows optional features,
specifically WSL2 and Hyper-V. See the full script for details on how
this is done.

Finally, we have a fully configured VM, all outstanding reboots are dealt
with (StopVM followed by a StartVM), and we are ready to handle
the patch extraction.

In order to get the files onto the VM, we make use of the Copy-Item
commandlet, with a -ToSession parameter to signify directionality
and the relative meaning of -Path (file source, from host) and
-Destination (new location, on VM). Now that the files are there
(in a location we know!), we can now run the PatchExtract script
we talked about above. As mentioned, this will fully expand the MSU
update so that we can determine all the DLLs which are touched by
the update.

As mentioned, I like to pull the patch files over to the host machine,
which can be done with a single command on the host:

The reason for pulling the patch files to the host is so that we can
quickly and easily generate a list of touched DLLs, then use that list to
extract them from the VM onto our host.

13Hyper-V Automation for Windows Patch Diffing

WHITE PAPER

Now that we have all the pre-patched DLLs, we can use Invoke-
Command once again to install the update:

Follow this up with another reboot, and we are ready to pull all the post-
patch DLLs from the VM. We do this exactly as above, simply changing
the destination folder to be post_patch . This gives us the pre- and
post-patch DLLs. Are they all the same? Let’s check!

While a given patch may touch thousands of DLLs in some fashion, a
much smaller subset of all possible DLLs is actually modified in a way
that their checksum changes. In order to construct this (typically much)
smaller set of files to look at, we loop over the DLLs in the post_patch
directory. If the file isn’t in the pre_patch directory, it must be new, so
add it to the DLLs_of_interest folder. Then we checksum both pre-
and post-patch versions of a given DLL, and if the checksum differs,
we move it to our DLLs_of_interest folder, suffixing the name of
the DLL with its origin folder (<DLL_basename>_pre.dll or <DLL_
basename>_post.dl l).

Below you can see the entire script, combining all of the above snippets
into a single script which can be invoked from an admin PowerShell
session on the host.

It is quite possible this script can be modified for use with qemu,
VirtualBox, or VMware workstation, but that’s left as an exercise for the
reader.

14Hyper-V Automation for Windows Patch Diffing

WHITE PAPER

15Hyper-V Automation for Windows Patch Diffing

WHITE PAPER

16Hyper-V Automation for Windows Patch Diffing

WHITE PAPER

Copyright © 2022 Musarubra US LLC
JANUARY 2022

WHITE PAPER

1.	 https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/reference/hyper-v-
requirements

2.	 While you may be aware that WSL2 uses Hyper-V, it does so in a special fashion. More specifically,
the Hyper-V role is the limiting factor to creating Hyper-V VMs on an unsupported OS variant.

3.	 https://docs.oracle.com/en/virtualization/virtualbox/6.0/admin/hyperv-support.html

4.	 https://blogs.vmware.com/workstation/2020/05/vmware-workstation-now-supports-hyper-v-mode.
html

5.	 https://wumb0.in/extracting-and-diffing-ms-patches-in-2020.html

https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/reference/hyper-v-requirements
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/reference/hyper-v-requirements
https://docs.oracle.com/en/virtualization/virtualbox/6.0/admin/hyperv-support.html
https://blogs.vmware.com/workstation/2020/05/vmware-workstation-now-supports-hyper-v-mode.html
https://blogs.vmware.com/workstation/2020/05/vmware-workstation-now-supports-hyper-v-mode.html
https://wumb0.in/extracting-and-diffing-ms-patches-in-2020.html

